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- 20 continued.
'among all A-stable two-step second-order formulas for uniform
steps, the A-constractive formulas are the only ones for which
A-stability is conserved under any sufficiently small pertur-
bation of the uniformity of the steps.

An efficient numerical ktudy, as well as perturbation
analysis of the solutions to the two-junction interferometer
was carried out. We obtained the dependence of the resonant
current on the ? terferometer's material parameters as well as
the previously undetected subharmonic resonances. Also the
shapes of the phase functions, both near and far from
resonance, were found.
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1. RESEARCH OBJECTIVES

1. Derive reliable and efficient variable-step methods for solving variable coefficient and

nonlinear differential equations.

11. Use analytical and numerical methods for determining the responses of interferometers

'and other devices involving Josephson junctions.
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2. STATUS OF RESEARCH EFFORT

I. Stiff Equations

a. Background

On a non-uniform grid It}, t, = V, n = 1, 2, h n = n-tn, the linear multistep

formulas written in operator form are

Pnxn-hnon,, = 0, (1)

k k
where P -O,, _,nX -. ,, n. n -j:j. n jn k+ j . For uniform steps, pxn = Ekp(E)xn

and ci n = E-ka(E)i,4 where Exn := xn, 1 and p(Q) Y aj, a Q) !j are the familiar

polynomials. The formula (1) is normalized by

kan,1 = , j.,, ( .2)
j-O

In order to solve the non-linear system i = f(t, x), the formula (1) can be implemented either

as a linear multistep (MS) method.

px,-h,,of(t, x,,) 0, (3)

or as a one-leg (OL) method

,x,,-h,(o,,,,, ,x,,) 0. (4)

The familiar MS-method (3) is converted into its OL-"twin" (4) by a permutation of f and o.

The uniform step (variable step) version of (I) is said to be stable with respect (w.r.)

to X - ?x (i = (t)x) at q = hX (q,, = h,,,(t,,)) if the characteristic polynomial p(')-qa(')

(p,(')-q,,,( )) satisfies the "root condition". For uniform steps, this is equivalent to

boundedness of all solutions {xnJ of the difference equation; for nonuniform grids it is a

formal algebraic constraint. The set S of all q's at which the formula is stable is the stability

1%
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region. The formula (I) is said to be contractive *[8] at q(qn) w.r. to a given norm II if

lixnl !S IIX,,. II, n = 1, 2, ..., where X, = (xn.k+1. xnk+2, .... xf). The contractivity

region K 11-• is the set of all q's at which the formula is contractive w.r. to I II. The formula

is said to be A-stable (A-contractive) if C cS(CcKiq. o ); here Z denotes the closed left

half of the q-plane. The formula is said to be A0-stable (Ao-contractive) if

R cS(RcK. ) where R_ denotes the closed negative real axis of the q-plane.

b. Ao-contractivity results.

We derived the two-parameter class of all two-step (k -2) second-orde- (p =2)

formulas which are A0-contractive w.r. to the maximum norm 11 . for arbitrary step ratios

r = r.n hn-_I [ I i]. This generalizes the corresponding results for uniform steps given in

18]. For the test problem i = X()x with arbitrary X(I) < 0, the OL-implementation of any

variable-step Ao-contractive formula provides an Ao-stable method for arbitrary step se-

quences {h'}.

c. A-contractivity results.

We also derived the one-leg parameter class of all p = k- 2-fnrmulas which are

A-contractive w.r. to )I * II for arbitrary step ratios (111. They are defined by

r2 r r(r-2) r2 2

2 2al~n=-I-r-(I-v)], 2!n-- v rv2 r 5r -0+2., 1 2+ 2r- I r_ 1____,22(+ ,
a. I r (l-v) 2(.1 = -+ + r 2( .r

where the parameter v satisfies

- S v 51. (6)r

*Numbers in brackets refer to the cumulative list of publications, Section 3 of this report.
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For i A(t)x with arbitrary X(t), Re ,(t) < 0, the OL-implementation of any

variable-step A-contractive formula provides an A-stable method for arbitrary step sequences

lh,}. We proved [111 that any formula with p = k = 2 is A-contractive w.r. to 1i • I1I iff it is

G-stable, i.e. A-contractive w.r. to some G-norm (a norm associated with a positive definite

quadratic vector form). For any given A-contractive p = k = 2 formula with r = I (uniform

steps), specified by a parameter value v = vi, 0 < v, < 1, A-contractive extensions to

non-uniform steps (ro 1) can be defined in such a way as'to keep the G-norm fixed w.r. to n

[I1. If this is done then, for an arbitrary step sequence {hn}, G-stability is assured for any

dissipative (monotone negative) nonlinear system.

d. Optimal A-contractive method.

An "optimally accurate" A0-contractive p k = 2 formula for uniform steps was

obtained in 19) by minimizing a bound of the global OL-error. By minimizing the same

objective function over the class of all A-contractive p = k = 2-formulas with r = 1, we found

(8] the "optimal" A-contractive formula

x i 4 n -.. -h(2-n - + -1 in,_ + -1 ,, =0 (7)-6 6- - - 6 9 9-9

which is associated with v = v, -2 This formula was generalized [Ill] by extending its

minimality property to the variable step case. It is defined by P = 2r/(2r + 1) and has

coefficients

0 (4rl2r =r(!i+r)

(I (+r)(+2r)0 /3 (1+2r) 2

I+r 1 /flo (8)
I+2r+2r2  I+2r+2r2

a 2  P2 2
(I +r)(I +20, (l+2r)

/
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e. A-stability for variable steps.

Given any p = k = 2-formula which is A-stable for r 1, we studied whether

A-stability will be preserved under any perturbation of r around r = I? We proved [1] that

for r = I + E the A-stability constraints remain satisfied to first order in [e I iff the formula is

A-contractive. Any other A-stable formula can be destabilized for certain X(t), either with

increasing steps (e > 0) (as is the case for the familiar two-step second-order backward

diffentiation formula used in many of the popular softwire packages) or decreasing steps

(e < 0). A realization of this result using geometric step sequences h. - hjr"-1 and X(ats)

= Ar l - n is given in [11]. In this case, the OL-difference bquation has constant coefficients

and it solutions remain bounded for n - iff the algebraic A-stability constraints are

satisfied.

I[
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I1. Josephson Inteferometer Equations

a. Background

A Josephson junction consists of two superconductors separated by an extremely thin

dielectric barrier. The order parameter 0 (phase difference between the wave functions of the

tow superconductors) satisfies the well-known Josephson relations. In one space dimension,

these relations, when combined with Maxwell's equations, lead to the equation

02, 02, IO
A0=Ox

2  at-- T 1 - k sin 0. (9)

For the purpose of describing the Josephson ac-effect, one is seeking running solutions of (9)

i.e., solutions 0 such that 40/ct is periodic of a certain period (21r/w). In a "voltage-driven"

junction, the frequency w - which is proportional to the voltage - is prescribed and the current
00

is given by the difference in LO at the two boundaries of the junction. In a "current-driven"

junction, one has to find 0 as well as its associated voltage (frequency) W. In point junctions,

the term - in (9) is negligible. We have been interested in studying properties of interfer-
Ox

2

ometers which consist of a number of point junctions connected in various manners and loaded

by currents.

b. Interferometer results

We studied the symmetric, two-junction current driven interferometer, whose equa-

tions are

6, +a;, + sin O1+ C-(O 1 -0 2) = 1/2 + l1

(10)
00 2 + a02 + Sin '02 + -(02-01) - 1/2 + 1,;

here A is proportional to the inductance. 1, is a control-current and 0 - wt + periodic of

period 21/r/. where w is proportional to the voltage. The following results were obtained:

Iq
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i) There are subharmonic resonances in the I- V curve, occurring around one-third of the

resonant frequency for small X, and around one-half of resonance for X-~ 1. These subharmon-

ics were previously undetected, but there is now experimental evidence of their presence.

ii) Near resonance, the periodic parts of the two phase functions are approximately sinusoidal

and are of opposite signs. However, they have an almost saw-tooth shape for small voltages.

iii) The correct dependence of the resonant current on the two intrinsic parameters X and

F---1! ' was found. Previously, only the approximate dependence on F was known.

JiG
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